キュウリ収穫量の可視化

キュウリを植えたらキュウリと別の物ができると思うな。人は自分の植えたものを収穫するのである。
二宮尊徳(金次郎)

変わらなければ生き残れない
ドラスティックに何かを変えなければ...
そんな危機感が日々日々強くなっていきます。

ただやはりキュウリからはキュウリである。自分自身に今あるものを育てて、いかに美味しく生き生きとしたものにしていくか。こんな時だからこそしっかりと学び、またやってくる旬の時期に備えたいですね。

とキュウリキュウリ言っていますが、僕はキュウリが大好きです。浅漬け、ピリ辛、梅あえ、シンプルなもろきゅう&味噌マヨもたまりません。宮崎県のキュウリの冷汁も大好きです。

今回はキュウリでいきましょう!

f:id:KenjiU:20200504130909p:plain

キュウリの収穫量を可視化してみました。なんとPythonによるWebアプリで実現しています。

PythonでWebアプリ作成

Pythonといえば機械学習ディープラーニング用。そんな風に考えていらっしゃる方も多いかと思います。しかし、Pythonには様々なライブラリが存在しており、実はWebアプリも作成することが可能です。

では、コードを見ていきましょう。

1. ライブラリの定義

定義しているDashPython用のWebアプリを作成するためのフレームワークです。Bootstrap(HTML, CSS, JavaScript フレームワーク)やPlotly(グラフライブラリ)を使うことができます。

import dash
import dash_bootstrap_components as dbc
import dash_html_components as html
import dash_core_components as dcc
import numpy as np
import pandas as pd
import plotly.graph_objects as pgo

# Bootstrapスタイルシートをリンク
app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP])

2. データの取得

キュウリの収穫量データと都道府県の緯度経度データを読み込みます。
以下のサイトのデータを使用いたしました。

きゅうり(キュウリ・胡瓜)の都道府県別生産量(収穫量)/グラフ/地図/一覧表|統計データ・ランキング|家勉キッズ

【みんなの知識 ちょっと便利帳】都道府県庁所在地 緯度経度データ - 各都市からの方位地図 - 10進数/60進数での座標・世界測地系(WGS84)

# きゅうりの都道府県別収穫量データ(CSVファイル)を読み込む
# 引用: ieben.net | きゅうりの生産量(収穫量)
# https://ieben.net/data/production-vegetables/japan-tdfk/k-kyuuri.html
ccb = pd.read_csv('cucumber_jpn.csv')

# 都道府県の緯度経度データ(Excelファイル)を読み込む
# 引用: みんなの知識 ちょっと便利帳 | 都道府県庁所在地 緯度経度データ
# https://www.benricho.org/chimei/latlng_data.html
ccb_latlng = pd.read_excel("latlng_data.xls", header=4)
ccb_latlng = ccb_latlng.drop(ccb_latlng.columns[[0,2,3,4,7]], axis=1).rename(columns={'Unnamed: 1': '都道府県'})
ccb_latlng = ccb_latlng.head(47)

3. データをグラフ表示用に加工

2で読み込んだデータを加工します。

# 収穫量分布バブルチャート用
# 「きゅうりの都道府県別収穫量データ」と「都道府県の緯度経度データ」をマージ
ccb_merge = pd.merge(ccb, ccb_latlng, on='都道府県')
# バブルチャートにカーソルをあてた時に表示されるテキストを定義
ccb_merge['notes'] = np.nan
for i in range (len(ccb_merge)):
  ccb_merge['notes'][i] = ccb_merge['都道府県'][i] + ' / ' + str(ccb_merge['収穫量'][i]) + 't' + ' / ' + str(ccb_merge['順位'][i]) + '位'

# 収穫量トップ20グラフ用
ccb_prep = ccb.sort_values("収穫量",ascending=False).head(20)
ccb_prep = ccb_prep.sort_values("収穫量")

4. 画面表示処理

各エリアのサイズや色やテキストなどを仕様に従い定義します。とてもシンプルですね。

app.layout = dbc.Container(
[
  # 画面のタイトルエリア
  dbc.Row(
  [
    dbc.Col(
    html.H1("キュウリの収穫量グラフ"),
    style = {
    "size": "30px",
    "backgroundcolor": "#fffcdb",
    "color": "#00a95f",
    "textAlign": "left",
    }
    )
  ],
  ),
  # グラフのタイトルエリア
  dbc.Row(
  [
    # 左グラフのタイトル
    dbc.Col(
    html.H4("収穫量分布"),
    width = 7,
    style = {
      "height": "100%",
      "backgroundcolor": "white",
      "textAlign": "left",
      "padding":"10px"
      },
    ),
    # 右グラフのタイトル
    dbc.Col(
    html.H4("収穫量トップ20"),
    width = 5,
    style = {
      "height": "100%",
      "backgroundcolor": "white",
      "textAlign": "left",
      "padding":"10px"
      },
    ),
  ],
  ),
  # グラフエリア
  dbc.Row(
  [
    # 左グラフ
    dbc.Col(
    dcc.Graph(
    id = 'JpnMap',
    figure = {
    'data' : [
      pgo.Scattergeo(
      lat = ccb_merge["緯度"],
      lon = ccb_merge["経度"],
      marker = dict(
        color = 'rgb(0, 169, 95)', #バブルチャートの色
        size = ccb_merge['収穫量']/1500+5, #バブルチャートのサイズ
        opacity = 0.7 #バブルチャートの透明度
        ),
      hovertext = ccb_merge['notes'], #カーソルをあてた時に表示されるテキスト
      hoverinfo = "text"
      )
      ],
    'layout' : pgo.Layout(
      width = 600,
      height = 500,
      template="plotly_dark", #ダークモード
      margin = {'b':5,'l':5,'r':5,'t':5},
      geo = dict(
        resolution = 50,
        landcolor = 'white', #陸地の色
        lataxis = dict(
          range = [25, 47], #地図表示範囲(緯度)
        ),
        lonaxis = dict(
          range = [126, 150], #地図表示範囲(経度)
        ),
      )
    )
    }
    ),
    ),
    # 右グラフ    
    dbc.Col(
    dcc.Graph(
    id = 'Pref',
    figure = {
    'data' : [ 
      pgo.Bar(
      x=ccb_prep['収穫量'],
      y=ccb_prep['都道府県'], 
      orientation='h' #横棒グラフ
      ),
      ],
    'layout' : pgo.Layout(
      width = 400,
      height = 500,
      template = "plotly_dark", #ダークモード
      margin = {'b': 5, 'l': 5, 'r': 5, 't': 5},
      xaxis_title = "収穫量",
      yaxis_title = "都道府県"
      )
      }
    ),
    ),
  ],
  ),
],
)

5. アプリ起動処理

最後にWebアプリ起動処理です。Dashはホットリロード機能を持っており、コードに変更があった場合に、自動でブラウザをリフレッシュします。

# アプリを起動
if __name__ == "__main__":
  app.run_server(debug=True)

最後に

キュウリの生育適温は20〜25℃。暖かくなり始めた5月の連休頃が植え付け時期となります。夏の生育期のキュウリは1日3cm以上も大きくなります。実家の庭で、朝小さかったキュウリが昼過ぎにはすっかり大きくなっていて、びっくりしたこともありました。ベランダ菜園始めようかしら。